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ON THE AXISY~ETRI~ SCREW NOTION OF AN INEXPRESSIBLE VISCOUS FLUID* 

A.B. AIPAPETOV and E.M. ZHMULIN 

Equations of the axisymmetric screw motions (SM) of a viscous incompress- 
ible fluid are obtained. Exact solutions are found for the caseofuniform 
SM. The criterion of the closeness of the SM to the uniform SM is 
formulated and exact non-linear solutions for the viscous SM with weak 
vorticity are derived. 

The equations of the SM of a viscous incompressible fluid, i.e. of 
the motions in which the velocity and vorticity are collinear, were 
first studied by Steklov /l/ and then given in the most general form by 
Byushgens /2/. However, the examples of the solutions of this non-linear 
indeterminate system of equations are practically exhausted by the 
solutions for two special linear cases: one of Steklov /l/ ("uniform" 
SM, where the ratio of the velocity and vorticity moduli is constant), 
and the other of Caldonazzo /3/ (a uniform cylindrical SM). Only a few 

other examples of the use of Steklov-type solutions for some special type 
flows can be shown (see e.g. /4/ and the references there). 

The indeterminacy of the system of viscous SM equations is its 
special feature. When the possibility of the existence of the spatial 
stationary SM of a viscous incompressible fluid described by a non- 
linear system of six equations in two unknowns was discussed in /2/, its 
compatibility was estimated in the general case to be of "low probability". 

The use of any physical concepts in the analysis of the general case 
is largely hindered by the lack of demonstrable examples of real spatial. 
flows which could be identified with SN. A unique non-trivial exception 
to this would appear to be the case with axial or spherical symmetry. 
This class could justifiably, in a sense, include such objects as a 
vortex behind a screw propeller, vortex tubes leaving wing tips, second- 
ary flows in curved channels, a flow in a funnel, a tornado, swirling 
streams, etc. Moreover, one can speak of the possibility of creating such 
flows experimentally. This relatively simple special case retains, 
nevertheless, such essential characteristic features of SM as the in- 
determinacy of its description and the non-linearity, and this makes it 
possible to regard it, in a sense, as a model. The present paper deals 
with the analysis of an axisymmetric SM of a viscous incompressiblefluid. 

1. When describing the motion of the fluid we find that in the present case (thepresence 
of an external potential force does not affect the generality of the approach) itisconvenient 
to start off with the equations of motion of a viscous incompressible fluid in the Gromeka- 
lamb form with respect to the vorticity o =(o~, otp, o,), written in a cylindrical system of 
coordinates. When this form is used, then taking into account the conditions of screw flow, 

R,V,= Q,V,,. Q*V,==Q,V,, QJ',=st,V, (I.11 
we obtain, without any changes, the system 

Moreover, the following equation of continuity must hold: 

av&?r + av,iaz = 0 (1.3) 

The relations connecting the velocity and vorticity components lead to relations of the 
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Q, = -av,ia2, a, = av,lar 

We see that according to (1.3) a stream function Cp exists such, that 

(1.4) 

v, = agia:, V, = -&+lar 

Substituting these expressions into the second relation of (1.1) and taking the first 
two relations of (1.4) into account, we conclude that 

v, = v, (Ip) = f (9) (1.5) 

The first and third condition of (1.1) do not contradict the second condition, and also 
lead to the result (1.5). 

Substituting the first relation of (1.4) into the first relation of (1.1) and takinginto 
account (1.51, we obtain 

s2, = --fdfl& 

Comparing this equation with the result of substituting (1.5) into the last relation of 
(1.4), we obtain the following equation for 9 : 

.J-+J = F (4% F ($1 = - fdfldq U.6) 
The quantities 62,,61,,& expressed in terms of the stream function must satisfy the 

system of equations of dynamics (1.2). Appropriate substitutions yield 

aLila = 0, aLflar = 0 (1.7) 

LF = 0, L = a/at - VF 

The first equation of (1.7) yields Lj = u (1) where a(t) is an arbitrary function of 
time which can be made equal to zero, since o(f)#O corresponds to the presence of an 
arbitrary irrotational field. Thus we have 

Lf = 0 (1.8) 
Comparing this equation with the last equation of (1.7) we see that, except for the 

trivial case of j=F=O, the equations are compatible if and only if the functions f and F 

are connected by a linear relation, i.e. 

-fWd$ = cf + co, c, c,, = const 0.8) 

The equation obtained represents a condition of compatibility of the overdefined system 
(l-61, (1.8) and has the following solution (apart from a constant): 

cp = -c-'f + c,c-'In (f + cOc-t) (1.10) 

Using (1.10) to pass, in Eq.(1.6), from 9 to f, we can obtain the second equation for f 

(f + cot-')I/Egf + cp (I + c,c-l)l + c& V,' + A') = 0 (1.11) 

which forms, together with the linear parabolic Eq.tl.81, an overdefined system describing 
the axisymmetric SM of a viscous incompressible fluid. We note that the solutionofthe system 
of the form f = __c&-' is trivial, since it corresponds to irrotational flow. 

2. Let us first consider two limiting cases of relation (1.9): cp = 0, c = 0. 
In the first case the system of equations has the form 

fr = VFf, 6/+cl/ =o (2.1) 

and has a non-stationary solution (the stationary solution is trivial) 

f = exp (-v&)G(r, 2) (2.2) 

where C is the solution of the equation FG + c'G = 0. The solution is identical with that 
obtained by Steklov, but unlike in /l/, where the form of solution was found using only an 
equation of the type of the first equation of (2.1), its derivation is rigorous. 

The last equation has, for example, a solution bounded at infinity, which generalizes 
the solution /3/ to the two-dimensional case 

G = erp (iJ.s)rJ, (JGFZ*r), li = const 

where Jl is a Bessel function. Using this solution we can construct, by virtue of the 
linearity of the system, a "fundamental" solution of system (2.1) independent of the wave 
number A, say, in the following manner: 

I-(Lr,z)= [ f(t,r,z,h)dl= - rl exp(- vc*i)q-r(&'- q') x 
-E 
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stream lines of such a flow p = CenSt($ = -f/C) for a fixed instant of time are 
the figure for C = 1 (the stream lines Cp = 0 are separated). We see that the 
an axisymmetric lamellar structure with singularities resembling toroidal vortices. 

A similar flow pattern was obtained in the course of numerical 

The 
shown in 
flow has 

computation for the non-stationary problem of the motion of 
fluid between concentric spheres when the outer sphere was 
accelerated instantaneously /5/. We also note a certain re- 
semblance between the pattern obtained and the cellular system 
of the secondary Taylor vortices in a flow between rotating 
cylinders, as well as the H&tler vortices, and the qualitative 
similarity of their kinematics to that of the strict screw flows 
makes it possible to assume that such a similarity is definitely 
justified. 

In order to analyse the second case (c = 0), itisconvenient 
to return from f to Cp: 

J? = 6. CD% - VC& + lI*v(qb' + s*t) = 0 (2.3) 
D I The problem of the compatibility of system (2.3) cannot be 

discussed without involving possible boundary value problems. 
In particular, when the fluid moves in a space not containing any boundaries, system (2.3) is 
found to be incompatible. 

Indeed, the presence of the variables 

1, = co:, 10 = fir. I@ = VG 

(the scale related to viscosity is not characteristic for the system, since the first equation 
of (2.3) is inviscid), in which the system of equations does not contain c0 explicitly, means 
that the second equation of (2.3) must have a selfsimilar solution of the form 

where A,B are arbitrary constants, a=1 and G (6) satisfy the equation 

2vBEG" - CCC'+ ct - vGf.4 = 0 (2. 4) 

At the same time, the formal solution of such a class has, for the first equationof (2.3), 
the form 

G (6) = 6 /(?A@ + const.:':' 

which does not satisfy (2.4) and corresponds, in fact, to the solution of a more general form 

* = I:* (To* + 20') + TV,) R PO. 20) 

where FR = 0 and T(1,) isanarbitraryfunctionnotsatisfying the second equation of (2.3) 
for any vaiues of T(f,). 

3. The last example shows that the problem of the compatibility of the general system 
(1.8), (l.ll), i.e. of existence of solutions describing the axisymmetric viscous screw flows 
is, generally speaking, not trivial, The first example of Sect.2 shows that a definite class 
of solutions of system (1.8), (1.11) exists when the flow is homogeneous (c~ = 0). It would be 
natural to expect that the flows corresponding to sufficiently small values of c, (orofother 
quantities related to it), which we can assume to be close to the homogeneous screw flows,can 
be realized, and that solutions of system (1.8), (1.11) belonging to such class exist. 

If we restrict our discussion to the class of flows including, in a continuous manner, 
such weakly inhomogeneous flows, then, before anything else, we must construct a criterion of 
inhomogeneity which could be used as the basis for formulating at least the necessary con- 
ditions for the flow to be close to homogeneous. With this purpose in mind, we shall consider 
the problem which was not considered until now , of choosing the arbitrary constants c and c, 
in (1.9). The constant, whose dimensions are of inverse length and velocity respectively, 
should carry the functions of the parameters determining the class of the flow, since they can 
be connected, in a natural manner, with the parameters characteristic for one or anotherclass 
of flows. Thus, for example, the solution of the Slzeklov problem of the form (2.2) shows 
that in absence of the characteristic time scale and of the geometrical scale, their part is 
taken by i/v@ and i/c respectively. 

In the case of a non-stationary problem described by the system (1.8), (1.11) in terms of 
f, we will introduce the geometrical scale of the flow 1, the characteristic time T and the 
azimuthal velocity U. Using the dimensionless variables 
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we obtain the system (1.8), (1.11) and relation (1.10) in the form (the bars are omitted) 

ft = Re-'Fj (::.l) 

(f f @[!E'! T fit (f f- e)l + c(/,~ + jz2) - = 0 

BV = --! + e In (f + ef 

The system (3.1) must satisfy, for the class of flows including uniform flows, thedemand 
of limiting passage, as e-+0, to the Steklov system for a homogeneous screw flow. This 
predetermines the independence of U from 1: and I, which must therefore refer not to the 
azimuthal, but to the axial motion. Moreover, in accordance with the last equation of (3.1), 
we must choose fi = i, i.e. c = I-', and cP must be satisfied uniquely C* = v1-' in order to 
ensure the feasibility of e -0. Here we have e = vi!U = Re,-’ where Re, is the Reynolds 
number found from the characteristic azimuthal velocity. 

The system obtained satisfies, for fixed Ro,the demand of passage to the limitas e-+0 
to the Steklov system, therefore the number R6, can serve as the criterion of inhomogeneity 
of the screw flow, and the nearness of 8 to zero can characterize the degree of nearness of 
the flow to uniform. Itcanbe shownthatthe systemobtainedhasnostationarysolutions. Indeed, 

if a non-trivial solution of the system 
E’q = 0, r++* + cp,a = -e-‘(p’, cp = f -i F (3.2) 

existed, itwouldinaccordancewiththe formofthe secondequation, havetosatisfythecondition 

'p < 0. Let us introduce the function @ such, that q = --CD-"< 0, forwhichthesystemhasthe form 

DEW = "/,e-r, @,' + DZa = ‘/,e-* 

Planes or circular conic surfaces which are not solutions of the first of the above 
equations, correspond to the integrals of the second equation. 

4. Below we shall give several examples to illustrate the fundamental possibility of the 
existence of solutions of the non-linear system (3.1). The examples will refer to a non-linear 
case of weakly vertical screw flows, when we will have (in dimensionless form) 

O,/V#<1, z=r, cp, z 

which is equivalent to the condition 'p<i imposed on rp from (3.21. 
In this case the non-degenerate system of lowest order obtained from (3.1) by neglecting 

terms of order o($), has the form 

cp~ = Re-‘Pip, cpE=p = cp,’ -+- ‘pz’ (4.1) 

In the case of a cylindrical screw flow cp = cp(t,r) the system has an exact solution 

cp (t, r) = const e exp I--r*/(4e,t)f, e@ = Re-’ 

and the constant should be made, by virtue of the symmetry, equal to 6: 

Ve = r-'f = 6r-r (exp f--r*/(4@)1 - f) 

The solution is identical, with respect to the azimuthal velocity, with the classical 
solution describingthediffusion of a rectilinear vortex tube in a viscous fluid, but it has 
also an axial flow of velocity 0, =I -(2e,t)-*rv,. 

The presence of a region of retarded flow near the axis corresponds to the pattern 
observed experimentally in converging flows /6/, 

In the general case cp = q(t, r,z) the system (4.1) has an exact solution 

cp (t, r, z) = ke exp (e&9 - Irz - W(4ept)l, Ir = cmat > 0 

which grows without limit, beginning from some instant of time, at a fixed point of space. 
Such a type of solution can be correlated qualitatively with the effect of "collapse" of a 
rectilinear vortex /7/. 

As was shown in Sect.3, system 13.1) as well as (4.11, has no strictly stationarysolutions. 
However, when the 6xfalReynolds numbers Re are sufficiently large , certain quasistationary 
solutions satisfying system (4.1) with an accuracy of O(E,) can be shown to exist. 

Since the second equation of (4.1) is independent of e, , such a quasistationary approxi- 
mation will be described by the system 

cPr = 6, qJE'cp = Q-i- 'pf (W 

Making the substitution ‘Ip= erP(6) we reduce the non-linear equation to the linear form 
E43=0. which has the following exact solutions bounded at infinity: 
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a,p=const>O 

arP(P"') 

where 2, is a Bessel function of first order and first or second kind depending on the type 
of the complex quantity F~. Here the solution e has a fairly complex form 

( erp(-aar~-(!.z) 

The one-dimensional case of a cvlindrical screw flow described by the exact solution of 
system (4.2) 

cp = conat * exp (-ar9, a = const > 0 

which corresponds to the velocity field 
0e = er-' (1 - exp (-ar*)], 0X = 2a1~, 

lends itself to clearer interpretation. The solution is identical with the known solution 
for a time-limited state of a rectilinear vortex stretching in axial flow (Burgers vortex). 
The solution was used by a number of authors as a heuristic model of a twisted external flow, 
while studying the mechanism of vortex collapse /?/. The magnitude of the constant a can be 
estimated from the condition v~, uz = 0 (I): a - 8-l corresponding to the experimental results 
obtained by Garg /7/. 
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ON STRONG TRANSITIONS BETWEEN STRUCTURES OF DIFFERING SYMMETRY ACCOMPANYING 
WEAKLY SUPERCRITICAL CONVECTION* 

B.A. MALOMED and M.I. TRIBEL'SKII 

A complete classification of the phase space of the dynamical systemwhich 
describes the motion of a liquid when there is weakly supercritical con- 
vection is carried out within the framework of a six-mode Galerkin approxi- 
mation. It is shown that all the phase trajectories are attracted to the 
corresponding stationary states. The domains of attraction to each of 
these states are found. The minimum value of a perturbation, which 
converts a weakly stable solution of one syaraetry into a stable solution 
of another symmetry when the parameters of the problem are closetotheir 
bifurcation values, is estimated. 
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